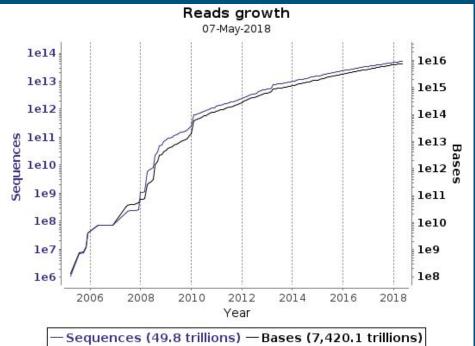

Resource-frugal analysis of whole genomes

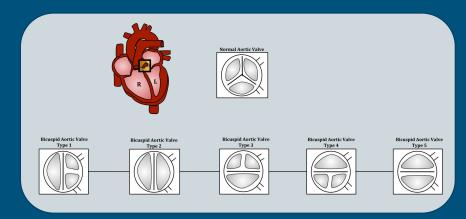


Sven Rahmann Genominformatik, Universität Duisburg-Essen & Informatik XI, TU Dortmund

VS.

Cost and numbers of sequenced genomes

Growth of Sequence Read Archive (SRA), Source: European Bioinformatics Institute (EBI)

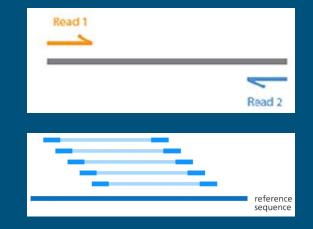

Source: NIH

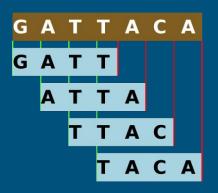
Bicuspid aortic valve (BAV): a heart condition

- 250 BAV genomes
- 250 controls
- 100 Gbp per sample (30x coverage)
- 50 TB of data in total

Questions:

Genetic features associated to BAV?
Genetic features associated to particular subtypes of BAV?

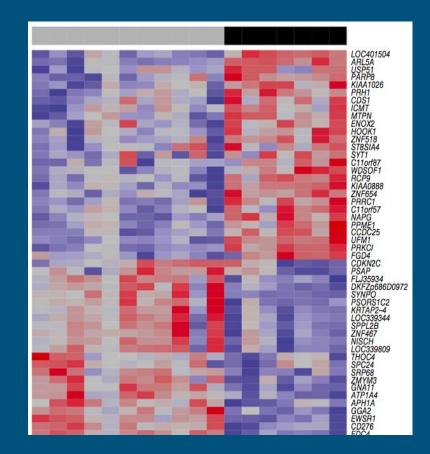



Source: <u>https://en.wikipedia.org/wiki/Bicuspid_aortic_valve#/</u> media/File:Bicuspid_Aortic_Valve.svg

(Collaboration with University Hospital Hamburg Eppendorf)

Approach: k-mer counting

- Genome is obtained as "short paired-end reads" (2x150 bp from 500 bp - 1000 bp DNA fragments)
- Classical approach:
 - Origin of each read is located on genome.
 - Information at each genome position (3.1 Gbp) is summarized and evaluated ("variant calling").
- Our approach: "alignment-free" or "k-mer based":
 - Partition reads further into k-mers, count them in each sample.
 - Select k-mers where the count is low in one class and high in the other class
 - Challenge of scale: 10 billion k-mers x 500 samples; count table does not fit in memory.



Desired results

- Small matrix of k-mers (→ genes) with low presence in one class and high presence in the other class
- Assemble k-mers to obtain longer genomic sequences; biological interpretation

Solve computational & statistical issues:

- full table never instantiated
- extremely-multiple testing
- which test(s) ?

