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The problem

Group testing [D43,DH93]

Ï n =population size, k = nθ = #infected, m = #tests

Ï all tests are conducted in parallel

Ï how many tests are necessary to identify the infected?



The problem

Impossible–hard–easy

depending on the number of tests, the task may be
Ï information-theoretically impossible

Ï possible but computationally “hard”

Ï computationally easy



Random hypergraphs
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Theorem

Let

mrnd = max

{
1−θ
log2

,
θ

log2 2

}
k logn where k ∼ nθ

The inference problem on the random hypergraph

Ï is insoluble if m < (1−ε)mrnd [JAS16]

Ï reduces to hypergraph VC if m > (1+ε)mrnd [COGHKL19]



The SPIV algorithm
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Theorem [COGHKL19]

There exist a test design and an efficient algorithm SPIV that
succeed w.h.p. for

m ∼ mrnd = max

{
1−θ
log2

,
θ

log2 2

}
k logn



The SPIV algorithm
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Spatial coupling

Ï a ring comprising 1 ≪ ℓ≪ logn compartments

Ï individuals join tests within a sliding window of size 1 ≪ s ≪ ℓ

Ï extra tests at the start facilitate DD
Ï algorithm based on Belief Propagation

inspired by low-density parity check codes [KMRU10]



A matching lower bound
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Theorem [COGHKL19]

Identifying the infected individuals is information-theoretically
impossible with (1−ε)mrnd tests.



Experiments
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Ï Belief Propagation posteriors

Ï orange: infected; blue: healthy

Ï n = 104, m = 1600, k = 500, ∆= 2

Ï false positive rate 0.01; false negative rate 0.02



Summary

Ï a randomised construction

Ï tight information-theoretic and algorithmic bounds

Ï inference via Belief Propagation


