

SFB 876 Providing Information by Resource-Constrained Data Analysis

Towards Optimal Bounds on the Width of Neural Networks joint work with A. Munteanu (TU Dortmund), Z. Song (Adobe Research) and D. Woodruff (CMU)

Simon Omlor | DoDSc 2021

Motivation

- Neural networks have been a popular topic for recent research;
- Even though they perform well in practice little is known about theoretical bounds

Motivation

- Neural networks have been a popular topic for recent research;
- Even though they perform well in practice little is known about theoretical bounds

Our goal: Analyze worst case behavior of 'simple' neural networks.

Two layer ReLU network

Assume that our data points are points in \mathbb{R}^d . Then a two layer ReLU network is given by:

• weights of the first layer, i.e. $w_1 \dots w_m \in \mathbb{R}^d$;

• weight vector $a \in \{-1, 1\}^m$ for the second layer;

We set $f(W, x, a) := \sum_{j=1}^{m} a_j \text{ReLU}(\langle w_j, x \rangle)$ (where $\text{ReLU}(r) = \max\{r, 0\}$) to be the prediction of x.

Train a Two layer ReLU network

Assume that we are given a data set consisting of points $x_1 \dots, x_n \in \mathbb{R}^d$ together with predictions $y_1, \dots, y_n \in \mathbb{R}$. In order to get good predictions one tries to optimize

$$R(W,X) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(W,x_i,a),y_i)$$

where $\ell:\mathbb{R}^2 \to \mathbb{R}_+$ is an appropriate loss function.

Train a Two layer ReLU network

Assume that we are given a data set consisting of points $x_1 \dots, x_n \in \mathbb{R}^d$ together with predictions $y_1, \dots, y_n \in \mathbb{R}$. In order to get good predictions one tries to optimize

$$R(W,X) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(W,x_i,a),y_i)$$

where $\ell: \mathbb{R}^2 \to \mathbb{R}_+$ is an appropriate loss function. Our loss functions:

$$\begin{split} \ell_1(f(W, x_i, a), y_i) &= \ln(1 + \exp(y_i \cdot f(W, x_i, a))) & \text{ logistic loss; } y_i \in \{-1, 1\} \\ \ell_2(f(W, x_i, a), y_i) &= (f(W, x_i, a) - y_i)^2 & \text{ squared loss; } y_i \in \mathbb{R} \end{split}$$

SFB 876 Providing Information by Resource-Constrained Data Analysis

Our goal

- Training error $R(W, X) \leq \epsilon$
 - Number *m* of inner notes;
 - Number of iterations needed.

Our results

References	Width m	Iterations T	Loss function
[Du et at. 2019]	${\it O}(\lambda^{-4} {\it n}^6)$	$O(\lambda^{-2}n^2\log(1/\epsilon))$	squared loss
[Song, Yang 2019]	$O(\lambda^{-4}n^4)$	$O(\lambda^{-2}n^2\log(1/\varepsilon))$	squared loss
Our work	${\cal O}(\lambda^{-2} {\it n}^2)$	$O(\lambda^{-2}n^2\log(1/\varepsilon))$	squared loss
[Ji, Telgarsky 2020]	$O(\gamma^{-8}\log n)$	$ ilde{0}(arepsilon^{-1}\gamma^{-2})$	logistic loss
Our work	${\it O}(\gamma^{-2}\log {\it n})$	$ ilde{0}(arepsilon^{-1}\gamma^{-2})$	logistic loss
[Ji, Telgarsky 2020]	$\Omega(\gamma^{-1/2})$	N/A	logistic loss
Our work	$\Omega(\gamma^{-1}\log n)$	N/A	logistic loss

Summary of previous work and our work. The improvements are mainly in the dependence on the parameters λ, γ, n affecting the width m.

Initalization sheme

Paired initialization:

- For each r = 2i 1, we choose w_r to be a random Gaussian vector drawn from N(0, I).
- For each r = 2i 1, we choose $a_r = 1$.
- For each r = 2i, we choose $w_r = w_{r-1}$.

For each r = 2i, we choose $a_r = -1$.

Initalization sheme

Paired initialization:

- For each r = 2i 1, we choose w_r to be a random Gaussian vector drawn from $\mathcal{N}(0, I)$.
- For each r = 2i 1, we choose $a_r = 1$.
- For each r = 2i, we choose $w_r = w_{r-1}$.
- For each r = 2i, we choose $a_r = -1$.

 \rightarrow Allows us to scale the vectors w_r as $f(W, x_i, a) = 0$ for all $i \in [n]$.

Gradient descent/NTK analysis

Update step:

$$W(t+1) = W(t) - \eta \frac{\partial L(W(t))}{\partial W(t)}.$$

Idea of the analysis:

$$\frac{\partial f(W, x, a)}{\partial w_r} = a_r x \mathbf{1}_{w_r^\top x \ge 0}$$

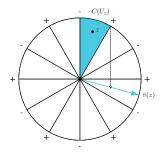
does not change by much over all iterations if *m* is large enough.

SFB 876 Providing Information by Resource-Constrained Data Analysis

Lower bound

Consider the following example data set:

$$\begin{aligned} \mathbf{x}_{k} &= \left(\cos \left(\frac{2 \mathbf{k} \pi}{\mathbf{n}} \right), \sin \left(\frac{2 \mathbf{k} \pi}{\mathbf{n}} \right) \right) \\ \mathbf{y}_{k} &= (-1)^{k} \end{aligned}$$



'Bad' example

Lower bound

Theorem 1

There exists a data set in 2-dimensional space, such that any two-layer ReLU neural network with width $m = o(\gamma^{-1})$ necessarily misclassifies at least $\Omega(n)$ points.

Outlook/Future work

- What is the worst case bounds of *m* for logistic loss: $\tilde{O}(\gamma^{-1})$ or $\tilde{O}(\gamma^{-2})$?
- What is the worst case bounds of *m* for squared loss: $\tilde{O}(n)$ or $\tilde{O}(n^2)$?.
- What bounds can be shown for networks with different activation functions/loss functions/more than two layers