
Towards Optimal Bounds on the Width of Neural Networks
joint work with A. Munteanu (TU Dortmund), Z. Song (Adobe Research) and D.
Woodruff (CMU)

Simon Omlor | DoDSc 2021



Motivation

Neural networks have been a popular topic for recent research;
Even though they perform well in practice little is known about
theoretical bounds

Our goal: Analyze worst case behavior of ’simple’ neural networks.
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Two layer ReLU network

Assume that our data points are points in Rd. Then a two layer ReLU
network is given by:

weights of the first layer, i.e. w1 . . .wm ∈ Rd;
weight vector a ∈ {−1, 1}m for the second layer;

We set f(W, x,a) :=
∑m

j=1 ajReLU(〈wj, x〉) (where ReLU(r) = max{r, 0}) to
be the prediction of x.
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Train a Two layer ReLU network

Assume that we are given a data set consisting of points x1 . . . , xn ∈ Rd

together with predictions y1, . . . , yn ∈ R. In order to get good predictions
one tries to optimize

R(W,X) =
1

n

n∑
i=1

`(f(W, xi,a), yi)

where ` : R2 → R+ is an appropriate loss function.

Our loss functions:

`1(f(W, xi,a), yi) = ln(1 + exp(yi · f(W, xi,a))) logistic loss; yi ∈ {−1, 1}

`2(f(W, xi,a), yi) = (f(W, xi,a)− yi)
2 squared loss; yi ∈ R
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Our goal

Training error R(W,X) ≤ ε

Numberm of inner notes;
Number of iterations needed.
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Our results

References Widthm Iterations T Loss function
[Du et at. 2019] O(λ−4n6) O(λ−2n2 log(1/ε)) squared loss
[Song, Yang 2019] O(λ−4n4) O(λ−2n2 log(1/ε)) squared loss
Our work O(λ−2n2) O(λ−2n2 log(1/ε)) squared loss

[Ji, Telgarsky 2020] O(γ−8 logn) Õ(ε−1γ−2) logistic loss
Our work O(γ−2 logn) Õ(ε−1γ−2) logistic loss
[Ji, Telgarsky 2020] Ω(γ−1/2) N/A logistic loss
Our work Ω(γ−1 logn) N/A logistic loss

Summary of previous work and our work. The improvements are mainly in the
dependence on the parameters λ, γ,n affecting the widthm.
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Initalization sheme

Paired initialization:
For each r = 2i− 1, we choose wr to be a random Gaussian vector
drawn fromN (0, I).
For each r = 2i− 1, we choose ar = 1.
For each r = 2i, we choose wr = wr−1.
For each r = 2i, we choose ar = −1.

→ Allows us to scale the vectors wr as f(W, xi,a) = 0 for all i ∈ [n].
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Gradient descent/NTK analysis

Update step:

W(t+ 1) = W(t)− η
∂L(W(t))
∂W(t)

.

Idea of the analysis:

∂f(W, x,a)
∂wr

= arx1w>
r x≥0

does not change by much over all iterations ifm is large enough.
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Lower bound

Consider the following example data set:

xk =
(

cos
(
2kπ
n

)
, sin

(
2kπ
n

))
yk = (−1)k
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Lower bound

Theorem 1
There exists a data set in 2-dimensional space, such that any two-layer
ReLU neural network with width m = o(γ−1) necessarily misclassifies at
least Ω(n) points.
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Outlook/Future work

What is the worst case bounds ofm for logistic loss: Õ(γ−1) or
Õ(γ−2)?

What is the worst case bounds ofm for squared loss: Õ(n) or
Õ(n2)?.
What bounds can be shown for networks with different activation
functions/loss functions/more than two layers
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