P-adic Coding and Computations

Thomas Liebig
Smart City Science

- „real-time systems for public good connecting public sector with industrial sector“

Aspects
- Standards
- Systems
- Governance balkanization
 - Gaia-X, architecture, Geo-spatial IOT, ...
- Algorithms/Methods
 - Distributed, Tractable, Efficient, Adequate, Ressource Aware
- Ethics
 - Privacy, Explainability, Participation and Knowledge Transfer
Smart City Science Topics

N.N.

Xeniya Gusseva (BSc)
HiWi (SFB-B4)

Fried Kullman (MSc)
Prediction of Machine State after Fault Injection

Karen Toben (MSc)
p-adic Neural Networks

Lukas Schneider (BSc)
Factorizing Distributions by Conditional Sum Product Networks

Timon Sachweh (MSc)
Differential Privacy for Learning from Label Proportions

Thomas Liebig | 2021
Prediction of traffic flow

Models and their Assumptions:

• Spatio-Temporal Random Fields
 – Markov Assumption
 – Tobler‘s Law
 – Daily Routines
• Distributed Prediction
 – Tobler‘s Law

• Gaussian Process Regression
 – Central limit theorem
 – Tobler‘s Law
• Graph CNN
 – Markov Assumption
 – Tobler‘s Law
 – Network topology
• Conditional Sum-Product Networks
 – Discrete distribution
 – Markov Assumption
We made implicit Assumptions

• Since Newton/Leibniz Spatio-Temporal phenomena modelled by ODE or PDE on \mathbb{R} (Euclidean or Minkowski coordinates)

• Models in \mathbb{R} map to \mathbb{R}

• Veronese & Hilbert stated in Euclidean geometry holds Archimedean Axiom

\[b > a \implies \exists m : b < m \cdot a \]
Problem with these Assumptions

• But, our observations can not be infinitesimal and are bound to topology of traffic network

→ Abandon Archimedean Axiom at very small scale (e.g. innercity junctions with low temporal granularity)

• How?
Geometry and Number Systems

- Coordinates describe Geometric picture
 \[
 \mathbb{R} \quad \text{Euclidean geometry}
 \]
 \[
 ? \quad \text{Non-Euclidean geometry}
 \]

- In computations or for measurements we use \(\mathbb{Q} \)
 \rightarrow \text{field (} \mathbb{Q}, | \cdot | \text{)}

 \[
 |x| = 0 \iff x = 0
 \]
 \[
 |xy| = |x||y|
 \]
 \[
 |x + y| \leq |x| + |y|
 \]
TwoPossibilitiesfor$|\cdot| $ [Ostrowski 16]

$|\cdot| : \mathbb{Q} \rightarrow \mathbb{Q}_+$

$|x| = \begin{cases}
 x & \text{if } x \geq 0, \\
 -x & \text{if } x < 0.
\end{cases}$

- Completion of $(\mathbb{Q}, |\cdot|)$ leads to $(\mathbb{R}, |\cdot|)$
The Geometry of \mathbb{Q}_p

- \mathbb{R} and \mathbb{Q}_p are metric spaces
- $(\mathbb{R},|\cdot|)$ and $(\mathbb{Q}_p,|\cdot|_p)$ are very different!
- In a metric space (X,d) the open balls are sets
 \[U_r = \{ x \in X : d(a,x) < r \} \]
 \[\text{in } (\mathbb{R},|\cdot|) \quad U_r = \{ x \in \mathbb{R} : |a-x| < r \} = (a-r,a+r) \]
 \[\text{in } (\mathbb{Q}_p,|\cdot|_p) \quad U_r = \{ x \in \mathbb{Q}_p : |a-x|_p < r \} \]
Applications of p-adic Models

- Turbulence
- Dynamic Systems
- Cryptography
- Economy
- Chaotic Fractal Behavior

- Quantum Mechanics
- Hierarchical Models
- Neuro Cognition
Classification of p-adic vectors

Q_p^N = \mathbb{Q} \times \mathbb{Q} \times \ldots \times \mathbb{Q}

\|x\|_p = \max |x_j|_p \text{ with: } x = (x_0, \ldots, x_{N-1}) \in Q_p^N

- Example \hspace{1cm} x = (x_1, x_2)^T \in Q_7^2

| |x_1 + x_2|_7 < 0.5 \hspace{1cm} \|x\|_7 < 0.5
Classification of p-adic vectors

- Sphere

\[\| x \cdot c^T \|_2 - b = 0 \]

selects one of these colors
Classification by digits of p-adic extension

\[x = (x_1, x_2)^T \in \mathbb{Q}_7^2 \]

\[[x_1^2 + x_2^2]_7 \equiv 2 \ldots \]

\[[x_1^2 + x_2^2]_7 \equiv 23 \ldots \]
Negative probabilities

• In Kolmogorov's probability framework probabilities of events must be **positive real numbers** [Kolmogorov 31]

• Here, we consider ensemble frequency of an ensemble of balls [Mises 19]

 – Consider, countable number of colors \(C \)

 – We observe an ensemble \(S \) of colored balls with the
 \[\text{#num of balls per color } k = 2^k \]
Negative probabilities

• Here, we consider ensemble frequency of an ensemble of balls
 – Consider, countable number of colors
 – We observe an ensemble S of colored balls with the number of balls per color $k = 2^k$

• 'Volume' $N = |S|$ of S is

$$N = \sum_{k=0}^{\infty} n_k = \sum_{k=0}^{\infty} 2^k$$
Negative probabilities

- This sum diverges in \mathbb{R}

$$N = \sum_{k=0}^{\infty} n_k = \sum_{k=0}^{\infty} 2^k$$

but converges in \mathbb{Q}_2

$$N = \sum_{k=0}^{\infty} 2^k = \frac{1}{1 - 2} = -1$$
Interesting to explore

• Models in \mathbb{Q}_p
• Model for (chaotic) cellular automaton (e.g. sandpile avalanche process)
• Negative & complex probabilities
 Description of Quasiprobabilities (e.g. Wigner distribution)
• Utilization of p-adic Algorithms in ressource constraint devices e.g. matrix inversion by [Dixon 82] ring inversion
 [Koç 17] random graphs [Hua & Hovestadt 21]
Literature