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Motivating Example 

Situation: 
We want to describe the relationship between observations Yij and 
measuring points xi by a linear regression model: 

Yij = θ1 + θ2xi + εij i = 1, . . . , k; j = 1, . . . , ni 

We are able to define the positions of measuring points x1, . . . , xk in 
advance. 

Example: 
n = 20 observations are taken in 
X = [0, 1] with ni = 4 observations at 
k = 5 di˙erent points x1 = 0, x2 = 

0.25, x3 = 0.5, x4 = 0.75, x5 = 1 0.0 0.2 0.4 0.6 0.8 1.0
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Question: Can the quality of the estimation be improved by choosing the 
measuring points in X appropriately? 2 / 11 
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The classical approach in optimal experimental design 

We assume: 

Yij = η(xi , θ) + εij ; i = 1, . . . , k; j = 1, . . . , ni 

η is a regression function 

xi ∈ X ⊂ Rd , X design space 

θ ∈ Rp is unknown 

Today: εij independent ∼ N (0, σ2) 0.0 0.2 0.4 0.6 0.8 1.0
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Interested in: Estimation of the parameter θ 

Goal: Select the points x1, . . . , xk and n1, . . . , nk such that the estimator, 
θ̂, of the parameter is most precise. 
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Minimizing the Covariance of the Estimator θ̂  

Assume a linear model: 

Yij = f T (xi )θ + εij ; i = 1, . . . , k; j = 1, . . . , ni 

Then the covariance matrix of the least-squares estimator θ̂  is given by: !−1kX 
Cov(θ̂) = ni f (xi )f 

T (xi ) ∈ Rp×p 

i=1 

Goal: Select the points x1, . . . , xk and n1, . . . , nk such that Cov(θ̂) is 
small. 

Approach: Minimize real-valued, convex functions of Cov(θ̂) with 
respect to x1, . . . , xk and n1, . . . , nk . 
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Commonly used criteria for minimization 

!−1kX 
Cov(θ̂) = ni f (xi )f 

T (xi ) ∈ Rp×p 

i=1 � � 
D-optimality criterion: ΦD (x1, . . . , xk , n1, . . . , nk ) = det Cov(θ̂)� � 
A-optimality criterion: ΦA((x1, . . . , xk , n1, . . . , nk ) = tr A ∗ Cov(θ̂) 

Popular D-optimal designs on [0, 1]: 
n nLinear regression f (x) = (1, x)T x1 = 0, x2 = 1 n1 = 2 , n2 = 2 

ΦD (x1 = 0, x2 = 1, n1 = n2 = n/2) = 4/n 

ΦD (x1 = 0, x2 = 0.25, x3 = 0.5, x4 = 0.75, x5 = 1, n1 = . . . = n5 = 

n/5) = 8/n 

5 / 11 



Optimal design of BIG DATA experiments 

Situation: Huge data set is available. 

Problem: The calculation of the LSE ̂θ based on the whole data set 
takes too much time. 

Target: Eÿcient selection of an optimal subsample which results in 
a precise estimation in an acceptable amount of time. 
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Optimal design of high-dimensional experiments 

Situation: The data or parameter θ is high-dimensional with d , p >> n. 

Problem: The classical least-square estimator is not feasible. 
Other estimators (LASSO) and sparsity arguments 
have to be used. 

Target: Eÿcient selection of an optimal sample which results in 
a precise estimation of the high-dimensional model. 

8 / 11 



Optimal design of high-dimensional experiments 

Current approaches: 

Hu and Lu (2019): Derive asymptotics and optimal designs of 
LASSO for sparse linear regression. 

Candès and Sur (2020); Sur and Candès (2019): Derive the 
asymptotic bias and variance of the maximum-likelihood-estimator in 
high-dimensional logistic regression. 

9 / 11 



Conclusion and Outlook 

In principle, optimal design of experiments can be used whenever 
the experimenter can influence the positions of the measuring points. 

Optimal design of experiments can improve the quality of such 
experiments substantially. 

Methods of optimal design of experiments might also be applicable 
to the setting of big data and high-dimension. 

Do you already have an improvable experiment in mind? 

Thank you very much for your attention! 
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