Surrogate-assisted Global Optimization of Chemical Process Flowsheets

Dipl.-Inf. Tim Janus
Process Dynamics and Operations Group, Department of Biochemical and Chemical Engineering, TU Dortmund University
Motivation

• **Design and rethink** chemical processes
 – More cost efficient
 – More CO2 efficient

• **Enhance the process design**
 – Flowsheet is designed in a process simulator
 – Most commercial process simulator act as a **black-box**, i.e. the underlying mathematical **model** is not known
Overview: Process design

- Which process is **more efficient**?
- \(\min f(x) \)

 \[\text{s. t. } g_i(x) \leq 0, \quad h_j(x) = 0 \]

- \(\text{DoFs} \subset x \)

- \(x \) in-accessible if simulation fails

- MINLP Problem with in-accessible derivatives

Motivation for Flowsheet Optimization!
Case-Study: Hydroformylation of 1-dodecene in TMS

- Thermomorphic solvent system:
 - High temperature \rightarrow one mixture
 - Low temperature \rightarrow two liquid phases

- Flowsheet modeled in process simulator Aspen Plus
 - 10 degrees of freedom
 - 25% Non converging simulations
 - Approximately 2200 equations
 - Approx. 6 seconds per simulation
 - Purity constraint on 99% mol on product stream
Memetic Algorithm for Flowsheet Optimization

Flowsheet \rightarrow Cost function \rightarrow Evaluation \rightarrow Improvement

MA \rightarrow ES \rightarrow Meme

Process simulator: ASPEN Plus

Surrogate-assisted Optimization Techniques!
Memetic Algorithm for Flowsheet Optimization

- Train surrogate models (shallow neural networks) on the fly.
- Train first surrogate after 500 simulations
- Retrain every 200 simulations

Memetic Algorithm for Flowsheet Optimization

- Prescreen simulation candidates based on potential
- Classifier: Will the simulation converge?
- Rule on Purity: $p_e < 0.99 - p_t$

Flowsheet → Cost function → Evaluation → Surrogate Assistance

MA

ES

Meme

Process simulator: ASPEN Plus

Presentation • DoDSC Colloquium • 16th June • Lecturer: Tim Janus

Surrogate-assisted Optimization Techniques!
Memetic Algorithm for Flowsheet Optimization

- Generate candidates by optimization on surrogate models
 - Use derivative-based algorithms
 - `fmincon`

Flowsheet
- Cost function
- Evaluation

Surrogate Assistance
- Selection for reproduction
- Variation
- Recombination/mutation
- Selection for new generation

Process simulator: ASPEN Plus

- #Sim over costs
- Ten repeats
- Solid mean value
- Area is variance
- Dotted is min/max
- #Sim over costs
- Ten repeats
- Solid mean value
- Area is variance
- Dotted is min/max
Problems-Challenges

- **Industrial-size case-study:**
 - 30 or more DoFs
 - Simulation times in order of minutes
 - High number of simulations due to derivative-free optimization
 - Results for an European Congress of Chemical Engineering (ECCE) contribution was based on 100,000 simulations
 - Computational time in magnitude of weeks
- **Divide and conquer**
Thank you! To get in touch scan the QR Code!