

Surrogate-assisted Global Optimization of Chemical Process Flowsheets

Oipl.-Inf. Tim Janus

Process Dynamics and Operations Group, Department of Biochemical and Chemical Engineering, TU Dortmund University

Presentation • DoDSC Colloquium • 16th June • Lecturer: Tim Janus

Motivation

- Design and rethink chemical processes
 - More cost efficient
 - More CO2 efficient
 - Enhance the process design
 - Flowsheet is designed in a process simulator
 - Most commercial process simulator act as a black-box, i.e. the underlying mathematical model is not known

Overview: Process design

- Which process is more efficient?
- $\min f(x)$

s.t. $g_i(x) \le 0$ $h_j(x) = 0$

- $DoFs \subset x$
- x in-accessible if simulation fails
- MINLP Problem with in-accessible derivatives

Fakultät Biound Chemieingenieurwesen

Case-Study!

Process Dynamics and Operations Group

Case-Study: Hydroformylation of 1-dodecene in TMS

- Thermomorphic solvent system:
 - High temperature \rightarrow one mixture
 - low temperature \rightarrow two liquid phases
- Flowsheet modeled in process simulator Aspen Plus
 - 10 degrees of freedom
 - 25% Non converging simulations
 - Approximately 2200 equations
 - Approx. 6 seconds per simulation
 - Purity constraint on 99% mol on product stream

Presentation • DoDSC Colloquium • 16th June • Lecturer: Tim Janus

Process Dynamics and Operations Group

Memetic Algorithm for Flowsheet Optimization

Presentation • DoDSC Colloquium • 16th June • Lecturer: Tim Janus

Memetic Algorithm for Flowsheet Optimization

- Train surrogate models (shallow neural networks) on the fly.
- Train first surrogate after 500 simulations
- Retrain every 200 simulations

[1] Janus, T., Lübbers, A., & Engell, S. (July 2020). Neural Networks for Surrogate-assisted Evolutionary Optimization of Chemical Processes. In Press: WCCI IEEE CEC 2020.

Presentation • DoDSC Colloquium • 16th June • Lecturer: Tim Janus

Process Dynamics and Operations Group

Memetic Algorithm for Flowsheet Optimization

- Prescreen simulation candidates based on potential
- Classifier: Will the simulation converge?
- Rule on Purity: $p_e < 0.99 - p_t$

[1] Janus, T., Lübbers, A., & Engell, S. (July 2020). Neural Networks for Surrogate-assisted Evolutionary Optimization of Chemical Processes. In Press: WCCI IEEE CEC 2020.

Presentation • DoDSC Colloquium • 16th June • Lecturer: Tim Janus

Process Dynamics and Operations Group

Memetic Algorithm for Flowsheet Optimization

- Generate candidates by optimization on surrogate models
 - Use derivativebased algorithms
 - fmincon

[1] Janus, T., Lübbers, A., & Engell, S. (July 2020). Neural Networks for Surrogate-assisted Evolutionary Optimization of Chemical Processes. In Press: WCCI IEEE CEC 2020.

Presentation • DoDSC Colloquium • 16th June • Lecturer: Tim Janus

Problems Challenges

- Industrial-size case-study:
 - 30 or more DoFs
 - Simulation times in order of minutes
 - High number of simulations due to derivative-free optimization
 - Results for an European Congress of Chemical Engineering (ECCE) contribution was based on 100.000 simulations
 - Computational time in magnitude of weeks
- Divide and conquer

Process Dynamics and Operations Group

Thank you! To get in touch scan the QR Code!

Presentation • DoDSC Colloquium • 16th June • Lecturer: Tim Janus