Data and dimensionality reduction for large scale statistical data analysis

Alexander Munteanu | 01.10.2019
Massive data analysis

Data collection

- Social media
- Online services
- Consumer electronics
- Physical experiments
Massive data analysis

Data collection

- Social media
- Online services
- Consumer electronics
- Physical experiments

MASSIVE DATA

Data analysis

- There is great value in understanding the data
- Statistics, Machine Learning, Artificial Intelligence
Massive data analysis

Scalability remains a challenge

- Often not considered or only heuristically
- Crucial for any useful machine learning approach
Massive data analysis

Scalability remains a challenge

- Often not considered or only heuristically
- Crucial for any useful machine learning approach

Contribution:

- Theoretical foundations for massive data analysis
- Methods for
 - performing statistical data analysis on
 - massive data, data streams and distributed data
Massive data analysis

Scalability remains a challenge

- Often not considered or only heuristically
- Crucial for any useful machine learning approach

Contribution:

- Theoretical foundations for massive data analysis
- Methods for
 - performing statistical data analysis on
 - massive data, data streams and distributed data
- Limitations
 - Lower bounds for data reduction
 - Lower bounds memory and communication
Massive data analysis

Sketch and solve paradigm

\[X \xrightarrow{\Pi} \Pi(X) \]

\[f(\beta \mid X) \xrightarrow{\approx_{\varepsilon}} f(\beta \mid \Pi(X)) \]
Massive data analysis

Sketch and solve paradigm

\[X \xrightarrow{\Pi} \Pi(X) \]
\[f(\beta \mid X) \approx_\varepsilon f(\beta \mid \Pi(X)) \]

Canonical approach

1. Data reduction \(X \rightarrow \Pi(X) \), where \(|\Pi(X)| \ll |X|\)
2. Time- and space efficient calculations on \(\Pi(X) \)
3. Approximation guarantee: solution is close to optimal
Our contributions for large or high-dimensional data

Massive data domain

1. **Bayesian regression** with Geppert, Ickstadt, Quedenfeld, and Sohler, Statistics and Computing 2017
2. **Graphical models** and **GLMs** with Molina and Kersting, AAAI 2018
3. **GLMs** with Schwiegelshohn, Sohler, and Woodruff, NeurIPS 2018
4. **Survey** on Coresets, with Schwiegelshohn, KI 2018
Our contributions for large or high-dimensional data

Massive data domain
1. **Bayesian regression** with Geppert, Ickstadt, Quedenfeld, and Sohler, Statistics and Computing 2017
2. **Graphical models** and **GLMs** with Molina and Kersting, AAAI 2018
3. **GLMs** with Schwiegelshohn, Sohler, and Woodruff, NeurIPS 2018
4. **Survey** on Coresets, with Schwiegelshohn, KI 2018

High-dimensional domain
1. Probabilistic **Smallest Enclosing Ball** with Krivosija, SoCG 2019
2. Global **Bayesian optimization** with Nayebi and Poloczek, ICML 2019
3. **Polygonal curves** (and **time-series**) with Meintrup and Rohde, NeurIPS 2019
Our contributions for large or high-dimensional data

Massive data domain

1. Bayesian regression with Geppert, Ickstadt, Quedenfeld, and Sohler, Statistics and Computing 2017
2. Graphical models and GLMs with Molina and Kersting, AAAI 2018
3. GLMs with Schwiegelshohn, Sohler, and Woodruff, NeurIPS 2018
4. Survey on Coresets, with Schwiegelshohn, KI 2018

High-dimensional domain

1. Probabilistic Smallest Enclosing Ball with Krivosija, SoCG 2019
2. Global Bayesian optimization with Nayebi and Poloczek, ICML 2019
3. Polygonal curves (and time-series) with Meintrup and Rohde, NeurIPS 2019

Thanks for your attention!