Data Science Challenges in Computational Chemistry

M. Sc. Julia Jasper
M. Sc. Nicolas Tielker
M. Sc. Yannic Alber
Prof. Dr. Stefan M. Kast

Fakultät für Chemie und Chemische Biologie
Physikalische Chemie III
Data & Science in Chemistry

Domain Expertise

Data Science

Mathematics

Computer Science

Statistical Research

Data Processing

Machine Learning

Chemists are (usually) in the danger zone.
Simulation-based methods

- Application starts out with available structural data
- Propagating atomic positions for a set of molecules yields highly correlated individual data points
- Millions of snapshots (results have to be extracted from trajectory)
- Tools for analysis often originate from statistics (Markov chain models, correlation analysis)
Data structures

- Distribution of solvent around a solute
- Volumetric data on 3D grids (density or energy value at each point)
- Large files → storage problem
- Volumetric data collapsed to scalars
- Both data types can be used for machine learning
Compensating for physical approximations

- Clean data but errors caused by physical approximations
- Complexity unaccounted for by high level data fitted through regression models
- Expensive and slow (larger systems can be unfeasible due to exponential scaling)
Regression Models on Synthetic Data

Practical applications of Data Science

- Correcting errors within the data generated using physics-based methods by training low level models
- Using physics to compensate for insufficient experimental data sources
- Correlate formally disjoint observables by fitting to independent quantities
- Retrieving information and knowledge from fitted models
- *Grand challenge:* **Be fast and predictive**

Further challenges

- Research data management: which types of data have to be stored and which can be discarded?
- NFDI (Nationale Forschungsdateninfrastruktur)
- Integration of Data Science in curricula