Electronic and nuclear spins in driven quantum dots:

Paradigm for non-equilibrium states with induced coherence

Götz S. Uhrig technische universität dortmund

DoDSC, July 11, 2019

Collaborators (present)

- Frithjof B. Anders, TU Do
- Manfred Bayer, TU Do
- Alexander Greilich, TU Do
- Philipp Schering
- Philipp Scherer
- ≽ Mohsen Yarmohammadi

International Collaborative Research Center TRR 160

Coherent manipulation of interacting spin excitations in tailored semiconductors

Quantum Dots

Spin in a quantum dot

- Two-level system: Quantum bit
- Long coherence time (µs)

Decoherence due to nuclear spins

Single quantum dot

Inhomogeneous ensemble

(Greilich et al., Science`06)

Experimental Motivation: Laser Pulses

(Greilich et al., Science 06,..., PRB'13)

Experimental Motivation: Laser Pulses

(Greilich et al., Science 06,..., PRB'13)

Model

Challenges for Simulations

	pulse:	trion excitation:	1.5 ps		
		trion decay:	0.4 ns		
	inverse r	ms of Overhauser field:	1ns		
	repetition	13.2 ns			
pulsing duration:			1-100 s		
	number N _{eff} of effectively				
	coupl	ed bath spins:	104-106		

How to bridge these **vast** orders of magnitude ?

method development: DMRG, Chebyshev polyn., (semi-)classical simulations, Bethe ansatz Mazur's inequality, equations of motion, ...

Simulation I

Classical eqs. of motion: many differential equations

$$\partial_t \vec{S}_0 = (\vec{A}(t) + \vec{h}) \times \vec{S}_0$$
$$\partial_t \vec{S}_i = (J_i \vec{S}_0(t) + z\vec{h}) \times \vec{S}_i$$

Average over Gaussian distributed initial vectors

/

Pulse means:

$$\vec{S}_0 \rightarrow \begin{pmatrix} X \\ Y \\ 1/2 \end{pmatrix}$$

X and Y are chosen randomly from Gaussian distribution

mimicking Heisenberg's uncertainty.

(Schering,...,GSU, PRB'18)

Simulation II

Criterion	Counted events	Derived metric
Run time	-	1,202 s
Cycles	2,990,606,954,255	2.49 GHz
Instructions	6,029,304,486,941	2.02 IPC
Branches	678,571,431,899	564.5 M/s
Brances missed	3,207,706,281	0.47% of all branches
L1-dcache-loads	1,624,791,427,721	1,352 M/s
L1-dcache-misses	30,835,374,765	1.9% of all L1 hits
LLC-loads	31,895,372	0.27 M/s
LLC-misses	1,644,291	5.2% of LLC hits

(Schering, Scherer, GSU, preprint'19)

Experiment vs. Theory

Experimental Measurement

Theoretical Simulation

After about 10¹⁰ pulses

Schering,...,GSU, PRB'18

See also Petrov/Yakovlev, JETP'12 Jäschke et al. PRB'17

(Kleinjohann,...,GSU,..., PRB'18)

Field dependence of Revival amplitude

(Kleinjohann,...,GSU,..., PRB'18; Jäschke et al., PRB'17)

To be compared with

Field dependence of Revival amplitude II

Main features of experimental mode-locking are explained qualitatively

Outlook: Include further experimental aspects:

- Ensemble of quantum dots
- several nuclear spins with different g-factors finite pulse length

True quantumness & quantum coherence?

Field dependence of nuclear frequency focusing III

